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The works of Aksenov, Grebenikov, Demin (1] and Kislik (2] on the
analytic theory of the motion of artificial satellites of the Earth re-
veal the importance of a general investigation of canonical systems
that can be integrated by the method of separation of variables,

Below is given a relatively simple method for the construction of
the complete integral with separated variables of the Hamilton-Jacobi
equation. The type of the equation can be arbitrary. Special attention
is given however, to the case when the left-hand side of the equation
is the sum of homogeneous polynomials of the first and zero degree with
respect to the impulses, while the coefficients of these polynomials de-
pend not only on the space coordinates but also on time. Under rather
weak hypotheses, the considered method yields necessary and sufficient
conditions for the integrability.* These conditions are imposed on the
characteristic function of the problem. A method is given for selecting
all those equations which can be integrated after a change of coordi-
nates by means of a contact transformation. It is proved that if the
Hamilton-Jacobi equation is of the same type as the equation of motion
of a material point in an n-dimensional Euclidean space, then it is in-
tegrable only in ellipsoidal coordinates and its degenerations.

After Jacobi [3, p.6] had established, in 1843, by means of a
rigorous mathematical analysis, that the principal Hamilton function

* For the sake of brevity the words "by the method of separation of
variables" will be omitted in the sequel.
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can be found not just from two equations, as Hamilton had stated, but
even from just one first order partial differential equation, there
arose the problem of solving this eqguation. The method of separation of
variables was found to be quite effective for certain types of equations.
Jacobi showed in the work just mentioned that the Hamilton-Jacobi equa-
tion of the type

Uy (p gl (p; = OV [ oY 0.1
is integrable not only in rectangular coordinates xl, HINPN =", but also
in ellipsoidal coordinates. The representation of the x' in terms of
ellipsoidal eoordinates he called a "remarkable” substitution.

Soon after this, there arose the problem of integrating & Hamilton-
Jacobi equation of & more genersl type*

Vgtpp, — U v b (py =V /idgh i,j=1,...n 0.2)

In 1847 Liocuville found a case when the equation is integrable. He
proved also that equation (0.1), with n = 2, can be integrated only in
terms of elliptical coordinates and their degenerations (polar coordi-

nates and similar ones).

In 1865, V.G, Imshenetski’s candidate’ s thesis, and in 1869 his
doctor’s dissertation (4], were published in which the method of separa-
tion of variables was applied not only te the Hamilton-Jacobl equation
but to a genersl first order partial differential eguation. His ideas is
used in this paper.

In 1880 Morers {5} found two cases of integrability of equation (0.2)
with n = 2. Independently of him, the same cases of infegrability were
found by Stickel [6] in 1891. In this work Stickel gave also a quite
general case of integrability for equation (0.2) which was & generaliza-
tion of Liouville’s case. Stickel [4] proved in 1893, that this case is
the most general one for eguation (0.2) which contains only squares of

the impulses
™
3;:8 gipt— U =k (0.3
2 e
Stickel’ s proof of the necessity and sufficiency for the integrability
of equation (0.3) can be found in the monographs by Charlier (8] and by

Lurte {9}.

* In this paper the symbols employed in tensor analysis are used.
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After the appearance of Stackel’s results there remained the problem
of finding cases of integrability of equation (0.2) which contained pro-
ducts of impulses to different degrees, impulses to the first power, and
the time explicitly in the characteristic function

HY = p+ Vyglpp, 4+ bp—U=0 (p=0V/ot; i,j=1....n) (0.4)

In 1904 Levi~-Civita gave, in a letter to Stackel {10}, necessary and
sufficient conditions for the integrability for equation (0.2). His con-
ditions were expressed in terms of a system of partial differential
equations for the characteristic function H =H(q1, cae, q“, Pis «es PR
of the problem

e ol i #N  6H 8l &H 0H 9H  &®H 0H 8H
P iop; 9p; ag apyop;— 0 09
p0p; 9t ag ap; 0¢ opr; a4  aq'9p; 9P ag ' 8q' o’ 0P OP;
(L:'(:]) lo]:11 AL ] n)

This system is valid alsc for equation (0.4) if one denotes its left-
hand side by H and if t is treated as one of the space coordinates.

Levi-Civita substituted into this system the characteristic function
of problem (0.2) and obtained in equations (0.5) & sum of homogeneous
polynomials in p; of degrees four, two and zero. Because of the arbi-
trariness of the constants of integration in the P all the coefficients
in these polynomials had to be zero. Equating to zero the coefficients
in the fourth degree polynomial one obtains a system of partial differ-
ential equations for ‘f Equating to zero the coefficients of the terms
of the second degree in p; and of the free term, one obtains partial
differential equations for g'J/ and U. From this Levi-Civita deduced the
theorem: if equation (0.2) is integrable then the equation is Integrable
with U = 0, i.e., in the absence of a force, An analogous argument can be
made also for equation (0.4).

Levi-Civita separated the integration of the equations for gij into
several cases, One of these cases, for arbitrary n, could be carried out
completely. This case differs from Stackel's case, but it has little use
because for it U is necessarily zero. The consideration of the remaining
cases is exceptionally involved; for this reason Levi-Civita confined
himself to the case when n = 2, and he confirmed once more the results
obtained by Morera [5] and Stickel [6,7].

.AIn 1908 Dall’ Acqua gave explicitly all the partial derivatives for
g'’/, which can be obtained from the equations of Levi-Civita, and in-
vestigated them for n = 3, He obtained all four types of integrable
equations (for n = 2 there exist three types). In our work [12} it is
proved, on the basis of the integrable types of Dall’Acqua that the
existence of the remarkable "substitution of Jacobi"™ is not only
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sufficient but also a necessary condition that equation (0.1) may be in-
tegrable by the method of separation of variables when n = 3.

In 1911 Burgatti [11), on the basis of Levi-Civita’s [10], and Dall’-
Acqusa's [11] studies, gave explicitly the expressions for the impulses
in terms of arbitrary constants of integration a. h, which are the most
general onmnes when n — 2, 3, and these expressions'appear to be the most
general ones for any n. He, however, was unable to prove that they
actually are the most general ones for n >4. The expressions of Dall’-
Acqua [11] and of Burgatti [13] are not given because they are special
cases of those found in Section 1.

It has not been established that the cases of Burgatti are the most
general ones for any n. It is true that a number of cases of integra-
bility of various generalizations of the Hamilton-Jacobl equation have
been found. We regret that a complete listing of the works on this topic
is not available; neither does there exist a survey article on this
subject. We have mentioned briefly only the works known to us.

G.N. Duboshin, in his additions to the translation of Moulton’s book
(14], mentions that Moiseev has extended the case of integrability of
Liouville to a characteristic function of the type H = T2 - T0 - U
(To # 0). Demin [15] generalized Stackel’s case to apply to an equation
that contains the impulses linearly.

But the possibilities here are limited. For example, Siegel [16]
proved that in some quite general cases there does not even exist a con-
tact transformation (p, ¢) = (a, P) which can be expressed analytically
(«, P are constants of integration).

1. We shall establish new cases of integrability of equation (0.4).

Theorem 1.1. Let an integer r be given (0 <(r<(n), and let r? con-

tinuous functions 9%/(g¢%) (i, j =1, ..., r), and (n - r)? continuous
functions ¢%/(q%) (i, j =r +1, ..., n) be given such that each of
them depends only on one variable ' and that the determinants

0 = Det ” ﬁif‘| and ¢ = Det “ ¢ij|? are different from zero.

Furthermore, let these be given arbitrary continuous functions
84 (q), ot (g1), o (¢), i (¢) (=r+1..., mi=0,...,nkil=1..,1
and arbitrary continuous functions of time
ck(t), (L), (), (@) (=r+1,...,mkl=1...,7)

Then the Hamilton-Jacobi equation (0.4) with the coefficients
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gi=2x 33 o (1) 8% + G i=1,....7
k=1 l=1
+ GE(D 2 Z 2 2 Cuu (t) (Dmueikejl (ﬁmkﬁml _ Omkl) (1'1)
m=r+1 u=r+1 k=1 l=1
{~___l_ i L uu ju ik qik i=14,...,r ) 1.2
g]— e®u=2r+1k§lc (t)(D 8‘0 (i=r+11"1n ( )
g“='% > e () O (=r+4t,...,n, g9=0 (Efiji=r+t,..,n)
u=r+1 (1.3)
r r r n . . r
B=— 2SS S M) 6% + =3 ket —
k=1 l=1 j=1 k=1
n n r r r . . .
——9“36 Z 2 Z 2 cuu (t) (Dmuetkejl (ﬁmkﬁml _ Gmkl) 070 + (1 4)
m=r+1 u=r+1 k=1l1=1 j=1
+e_{6 3OS e O™ 0*(20™ ™ — ™) (i=1,.., 7)
m=r+l u=r+1 k=1
= 5% S e (1) DrEGilgr _ % S) ¢ (1) @90 (1.5)
u=r+l k=1 l=1 u=r+l
(l =TI + 1, ’ n)
U=~ 3 33 S ) 8™ e s™s™ +
k=11=1m=1 u=1

— Z ic"" (1) @7 [(8)2 — ¢'] (1.6)

where 0'J and 8/ are the cofactors of the ith row and jth column of the
determinants ¢ and 6, is integrable and has a complete integral of the
form
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V = Ansy +Spdt + Z R Pidqi (p=20V/dt, p; :6V/6q{) (17)
t i1 g
where
p=—=3N 3" Wauu— 3 oy — Sk (@) + v () (1.8)
k=1 l=1 u=r+1 k=1
p,=0"(¢") + S0 (g) o (i=1,...,7) (1.9)
k=1
pi = 00 () + B O*(¢) a +
k=1
r r ' r ) . ) ] n . s
-%[Z‘, 36 (g) a3 o (¢) ax W (g) + S @i (g aw | (1.10)
k=1 l=1 ES Uu=r+1 4
(i==r-+1,...,n)

Proof. We shall make use of the results of Imshenetskii (4], and we
shall show that the elimination of the arbitrary constants Gy, ey
from equations (1.8) to (1.10) leads to an equation of type (0.4), the
coefficients of which are determined by formulas (1.1) to (1.6). Indeed,

equations (1.9 permit us to express aj(j =1, ..., r) in terms of

p;(i =1, ..., r) and of the elements of the matrix Il 847 11-1 whicn
exists because of hypothesis the Det /| §'J || = © # 0. But then equations
(1.10), in which the a. (i =1, ..., r) have been substituted, make it
possible to find the a,(u = r + 1, ..., n) since by hypothesis

Det ||®7/ || = 0 # 0. The substitution of the expressions for (i = 1,

., n) into (1.8) will yield an equation of type (0.4), whereby (as can
be shown by means of quite lengthy calculations) the still undetermined
coefficients of this equation can be found with the aid of formules (1.1)
to (1.6). It remains only to verify that Det || 22v/3¢' 3. || # 0. But
this determinant, for equations (1.9) and (1.10), is equal to 400, where

T

] r \ -1
o == 2"(71—7') J[ (!)u . ‘(}'Lu) . 2] ﬁukl}‘.) #___ 0
U=r+41 k=1
because infinitely large values of p, and o, are not considered, and be-
cause the 0Y% are continuous. Thus Det H 82V/Bq‘aaj‘! # 0 since © # 0
and ® # 0 by hypotheses.

Equation (1.7) makes it possible to find V by means of a simple
quadrature because each impulse depends only on one coordinate. This
proves the theorem.
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This theorem establishes the integrability of the Hamilton-Jacobi
equation with a characteristic function depending explicitly on time.
This case has not been considered in the literature known to us. There-
fore, a comparison with known cases can be made only for oH/dt = 0.

An analysis of [5-7, 10,11,13] shows that the above expressions for
g'/, U (h' = 0) coincide with the most general ones for n = 2, 3, and
with the expressions found by Stéckel [7] (r = 0), Burgatti [13] (r # 0),
and Moiseev [14] for arbitrary n. If h* # 0 expressions (1.1) to (1.6)
include those found by Demin [15] (here r = 0).

One seeming generalization consists therein that the functions 99,

9, ~ ¢J and y are assumed to depend not only on one variable, but on
all ¢, g1, ..., ¢ and that they are subjected only to the integrability
conditions

api | 0¢) = dp; | dq, op/l aqgt = ap; [ ot

But this case can be reduced by means of a change of variables to one
considered earlier (for more information about this substitution see
Section 3).

The fact that the expressions found here cover all known cases is not
an accident.

2. Theorem 2.1. In order that equation (0.4), which has a positive
definite quadratic form gijpiq. and continuous coefficients gij, h; and
U, may be integrated by the method of separation of variables, it is
necessary and siffucient that the coefficients g'/, h* and U have the
form indicated in Theorem 1.1.

Proof. We shall base our arguments again on ideas of Imshenetskii.
It is known [4] that in a complete integral the arbitrary constants «
are considered as depending on ¢, ql, . q" (otherwise one obtains
either a general or a particular integral). Therefore, if one solves the
Hamilton-Jacobi equation (0.4) for each of the variables p, p; and
assumes that V is to be found in the form

Vo 100 4 Vg T

then the left-hand side will contain functions of only that variable
with respect to which the differentiation of V is performed, while the
right-hand side will involve all variables. But all these variables,

with the exception of the one on which the left-hand side depends, can

be assumed to be equal to the initial values because of their independ-
ence. But then, if Det H an/aqiaujll # 0, the arbitrary constants which
are in p and p; can be chosen so that p and p; will take on their initial
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values p and p; , whereby the set of initial values to q0 , p and
pio nust satisfy equation (0.4). Since the form g Up. ;p; 1s positive

definite in the p,, g'* # 0, and for each p, there exists a quadratic
4 1 nll

eguation from wh
equasion Irem wWo

Pi=%'+ 8 = Ve it 6+ o, (2.1)
Besides that

o 0 .0 N {9 9N
P = Va T V)T Vg \&.q)

All remaining arguments will be made for the case when the sign in
front of the radical in (2.1) is plus. Analogous results hold when the
sign is minus.

In formulas (2.1) and (2.2) the subscripts indicate the degree of
the homogeneous polynomial in Py and p which is denoted by the given
letter. The initial value p? is ‘given by the formula

1 ..
pP=—75 80 °p°p — ho{Pio + Us @23

where the 1ndex 0 indicates that in g j, hi and U we have set t = ty
and ¢' = q0 .

If one substitutes expressions (2. 1) and (2 2) into equation (0. 4)
then one obtains an 1dent1ty in t, q%, ty. " po‘ if one puts p° from
formula (2.3) imto 8,' + 6, i+9 ‘, which we shall denote by ¢2‘ +
N L P ! in what fellows The identity now takes the form

8,401+ 0+ 557 (00 + 0+ Ve + 0+ 00) (87 + 07 + Vo + 0 +90)+
TR O+ 0+ Vel o+ o) — U =0 (2.4)

and determines the form of the coefficients gij, Rt and U for which the
variables in V are separated. The analysis of this identity depends
painly on whether the expressions ¢2' + ¢1‘ + ¢, under the radical are
pe;fect gquares or not. In the general case one may assume that ¢2‘ +
9"t ¢0‘ is a perfect square when i =1, ..., r. Then

8, + 0+ Vit o + o = ' + 10 (E=1,..., 7 (2.5)
In view of this, identity (2.4) takes on the form

1 0 ) )
B, +8, 480+ 5 > 2 g7 '+ %) o + ) +

i=1j=1
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r n r n
+3 Y ) G0N+ D D i+ Vel +ed + e +

i=1 j=r+41 i=1 j=r41
. 2 n . . ) T &
4+ 5 Z 2 gi, (0, + 00‘) (8 + 8) + 3 Z g (‘Pa‘ + o'+ (Po() +
f=r41 j=r+1 i=ri1
n
+ D @) Vel + ol +ol+
i, J—T+l
i>j
-+Z WV%+%¢WoVW+%+%“+Z#m+m%+
i,j=r+1 i=1
>3 n
+ 2 Bt o)+ D B Veltol o —U=0 (2.6)
i=r41 {=r41

Because of the arbitrariness of the initial values of the impulses,
it follows that

F=0 (iFj, j=r+1,...n) @.7)

and therefore, 01' will depend only on p1 v e Py , and not on

Pr+1' cevs Pp °. On the other hand, for the same reason cp2‘ does not con-
tain products pl (1’7‘-, L, m=r vl ., n). Hence <p2‘+q>1‘+
q>0l is equal ( - 0‘ + Xl -9, iy Xo )2 only when Xl also does not de-
pend on pr+g, e pno. The 1ntroduction of the notation

r
F=N @ 6 =00 =1,...0 (2.8)
j=1
. J
01‘ = 2 6” (qi) Pjor 001 = §% (qt) i=r44...0n (2.9)
j=1
r r r n
o =) DM (@) port+ D) D o) paopn® + 2.10)
k=11=1 k=1 m=r+1
+ 2 q’im(qi) (p,0)* (i=r+1,...,n)
m=r+1
" N . r 3 3
o= 2 @ pd+ 3 () Pme =rd+t .0 @11
k=1 m=r+1

90 =¥ (q)) (i=r+1,...0) (2.12)
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r n
0, = — 2 E ) ppr— 2 2 I PP — D] ) (P (2:13)
k=11=1 k=1 m=r41 m=r+1
n
0= — D FWpo— 3 "W pyd O =%) 2.14)
k=1 m==r--1

and the equating to zero of the coefficients of the radicals and of the
initial values of the impulses (because of their arbitrariness) yields
systems of linear equations for the successive determination of the g‘l,
At and U,

In order to find the gli (1t =r +1, ..., n) 1t is sufficient to
equate to zero the coefficients of (pio)z.(i =r+1, ..., n) in equa-
tion (2.6). Solving these equations for g“, we obtain a formula of
type (1.3). If we equate to zero the coefficients of p 0, .,_,j" (i =r+1,

., n; j =1, ..., r) then we derive equations for the g (i = r + 1,

., n) of the just described form. Hence ckl(t), aikl(qi) (k=1,...,r;
1 =r.+1, ..., n) must be linear combinations with constant coeffi-
cients, of ¢J7(ty and @‘J(q y (i, gy =r +1, ..., n). The coefficients
of g‘l (i=1, ..., r; j=r +1, ..., n) are determined by the equations
which express the vanishing of the coefficients of the radicals; this
leads to expressions of type (1.2). Expressions of type (1.1) are ob-
talned from the equations which insure the vanishing of the coefficients
of pk pl (R, 1 =1, ..., ) by substituting into them the just deter-
mined coefficients g//, g YUo(i=1, ..., r j=r+1, ..., n). The
vanishing of the coefficients of the first powers of pl.0 (i = r +1,

., n) yields expressions for h' (i = r + 1, ..., n) of type (1.5);
while the vanishing of the coefficients qf the first powers of pio
(i =1, ..., r) ylelds expressions for h' (i =1, ..., r) of type (1.4).
Finally, the term which is free of pl.0 gives an expression for the force
function U of type (1.6).

In this manner expressions are found for all the coefficients which
differ from expressions (1.1) to (1.6) only in the fact that.their left-
hand sides do not depend on the initial conditions t, and qo‘, while
their right-hand sides, formally speaking, do depend on them. By assign-
ing to these intial terms some numerical values, we obtain formulas
(1.1) to (1.6).

Since Det || 32V/aq‘aa | =400 (Section 1) 1s not zero, ® # 0 and
© # 0. The theorem has thus been proved.

The method of finding the complete integral used in this proof leads
to the same results as the equations of Levi-Civita, in the derivation
of which it is also assumed that 9H/dp, # 0 [10]; our method is,
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however, considerably simpler. Naturally, it can be applied to
Hamilton’s equation of the most general type, as well as to an equation
or a system of partial differential equations of any order. Besides
that, this method does not require the solving of the canonical equa-
tions as was suggested by Imshenetskii [4].

From Theorems 1.1 and 2.1 it follows that the cases of Burgatti
(H/9t = 0) are the most general ones.

3. Expressions (1.1) to (1.6) can be considerably simplified even for
the general case mentioned at the end of Section 1. This can be done by
introducing new independent coordinates Q, of the time T and of the
principal function W, the partial derivatives of which with respect to
the old coordinates and time are given by the formulas

i i i k k k
: a a a
?—g—:_c', i—’&:ﬁﬁ, an =0, -—Q—z—_o, Q =0, il:b{f
1 ag dq at aq’ aq
ow aw . ow
—_—= =p$ , —.=p.=p.—ﬁ]0, — =P =p.—ﬁlo, T =1
ot v aq’ i i aq' l l
OF=11f k=104if k=Li,j=1,..,nkil=r4+1,...,.n

It is not difficult to verify that the conditions of integrability
are here satisfied.

But then the corresponding Hamilton-Jacobi equation
P+ 1Y, GYH PP, + HP, — Ut =0 (3.1)
has the coefficients

n n
G = zcﬁm—.%. SO HEmerti ey (Lj=1,...0
k=r+1 l=r+41
2 n
i k 7 ] ;o
G_KZ & (T o (i=r<4+1,...,0n
k=r+41
G¥=0 (isj,i=1,...mj=r+1,...,n
n n
H=—1 5 3 dmos @y (i=1,....n
k=r+1 l=r+1
‘H'=0 i=r+1,...,n)
1 n n
U= 2 2 FmoivQ)
i=r+1 j=r+1

The complete integral of equation (3.1) is given by formulas
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n

w = par ZSPdQ' p_—ZE HD) aa— D) M) o
T

k=1l=1 j=r+1
P‘l - ai (l = 1, . e oay l') (32)
N np S . N
— l: 2 2 gkl (QJ) o, + }J‘ stk ) a, -+ P (Q?) + Z (p]m (QJ) am:l
k=1 l=1 k=1 m=r+41
=r41,...,n)

Hence, such a change of variables simplifies considerably expressions
(1.1) to (1.6). Formulas (3.2) show that the new impulses p; (1 =1,

., r) retain their constant values; hence, coordinates Q‘ (i=1,...,r)
are cyclical coordinates.

This analysis shows how important it is to find all those types of
dependences of the principal function V on the arbitrary constants o of
integration for which the elimination of these constants from p==aV/3t
and p, = OV/9g" leads to an equation of type (0.4). The complete solu-
tion of this important problem, posed already by Burgatti [13], presents
in the general case seemingly enormous difficulties, and is even im-
possible in the class of analytic functions [16].

4. We consider the following generalization of the results of
Sections 1 and 2. As before, let V and p be given by formulas (1.7) and
(1.8). For the p, (i =1, ..., r) we have the formulas described at the
end of Section 1, but the a; (1 =r+1, ..., n) are sums of homogeneous
polynomials of degree not greater than two in p; (j =1, ..., n) the
coefficients of which depend on generalized coordinates and time. In
this case the dependence of the pj on the «; (i =1, ..., n) will be,
in general, irrational and even transcendental since, even when n = 2,
one has to solve an algebraic equation of fourth degree in order to ob-

tain this dependence.

Furthermore, the conditions of integrability [10] Jp /aql = ap /3q*
have to be fulfilled. These conditions are equivalent to equat1ng ! the
Poisson brackets equal to zero, i.e. (a a; ) =0, j=1, ..., n).
In these equations all coefficients of the various powers of p, are
zero because the constants of integration, which occur in the p , can
take on arbitrary values. This yields partial differential equat1ons in

&'/, bt and Uy if o, =1/2 g,lpp; + hylp; = Uy (k=r + 1, ..., n);
even for n= 2 (g 12 4 0) these equatlons become very complicated; 1if,
however, gk = 0 we obtain the known Liouville-Stickel case.

The possibility of another type of generalization is given by the
solution of the Hamilton-Jacobi equation for the inertial motion of a
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material particle in a rotating system of coordinates

Yo (p 2+ P2+ 0 +n(p, —2p) =h

which cannot be integrated by the methods presented above even though
the complete integral of the equation

p+'prt+tp+p) +nlyp, —zp)=0

can be found by the method described at the end of Section 1. From it
one can obtain the complete integral of the first equation; the depend-
ence of V on a is transcendental and very complicated. Therefore, the
"usual"” substitution p = — h can considerably complicate the integration

of equation (0.4) even when H/ot = 0.

The formulas of Section 1 show that the equations of the character-
istics (the canonical equations) for integrable equations of type (0.4)
have first integrals which are either quadratic or linear in the im-
pulses. This fact makes it possible to solve effectively certain prob-
lems of stability for such systems by the method of combining first
integrals (i.e. by the method of N.G. Chetaev). This method can be
applied also to the system described in this section.

5. Again, let the Hamilton-Jacobi equation (0.4) be given with the
functions g'/, h' and U of 't and ¢'. It is required to determine whether
this equation can be integrated by the method of separation of variables.
The easiest way to answer this is with the aid of a method which was
used already by us in the proof of Theorem 2.1, because this method does
not require the verification of the very complicated expressions for
g'/, h' and U found in Section 1. This method can be reduced to the per-
formance of the following operations:

a) We solve equation (0.4) for each of 1ts partial derivatives p and
P

b) Each of the coordinates ¢! (and time) except the one which is on
the left-hand side, is equated to its initial value; this results in
equating the impulses, which appear on the right-hand side, also to
their initial values. Hereby, the initial values of the coordinates of
time and of the impulses must, naturally, satisfy equation (0.4).

c) We integrate the expressions obtained with respect to that vari-
able which occurs in the left-hand side, and add the result, construct-
ing in this manner the principal function V.

d) We substitute the partial derivatives p and p; into (0.4) and
verify whether or not (0.4) becomes an identity 0 = 0 if the initial
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values satisfy the condition given in subsection (b). In the first case
equation (0.4) can be integrated by the method of separation of vari-
ables, in the second case it cannot be so integrated.

If equation (0.4) cannot be integrated by the above mentioned method
then one has to try another procedure: one can check whether it can be
integrated by the proposed method after a change of variables. For ex-
ample, the two body problem can be integrated by this method in polar
coordinates, but not in rectangular coordinates. There arises the
general question: is it possible to give criteria on the basis of which
one can determine whether or not there exist such transformations of
variables (¢, ¢, p) = (q¢’, t’, p’) that the equation is integrable in
the variables (q’, t', p")?

Let us first analyze the case when 9H/0t = 0, and when we assume that
in equation (0.2) the space coordinates ¢ only are transformed into the
coordinates q'(g ~ g'). In this case one may make use of a theorem of
Levi-Civita [10] which states that if equation (0.2) is integrable then
it is integrable if U = 0. According to results obtained in tensor
analysis (see, for example, [17]), when g -~ g’ then

o' ag* gt g
—ql—,—qI—kT (,]i' -—q-—,leij (51)
9q"" 99" 09" 4q”

Ryiy =

when leij is the Riemann curvature tensor corresponding to the metric
g'’/,, while Ry+ ¢, v+ is the Riemann curvature tensor for the metric

g't 7. Equations {5.1) solve the stated problem. Indeed, into their
left-hand sides one can substitute expressions g'' / of Section 3, and
into the right-hand sides expressions R;,;. in terms of the original co-
ordinates which are known. Making use of tﬁe formulas for the trans-
formation of thg,gij, one must eliminate from equations (5.1) all deri-
vatives 0¢'/9¢'" , of which there are n?, while the number of equations
in (5.1) is at least n® (Section 5). The derived equations for the func-
tions ¢ and o with indices can be solved by generalizing the method of
"fixing the extraneous variables" which was mentioned in Section 2. Sub-
stituting the expressions found for ¢ and o'into.gqﬁations (5.1), and
solving them for each of the derivatives 9q'/9q’' , one can obtain the
fornulas for the transformation ¢ ~ ¢’. One can obtain analogous results
also in the more general case (Section 3) when there exist only square
integrals which are in the involution since the mentioned theorem of
Levi-Civita is valid here also.

For substitutions of the type (g, t) = (q’, t"), a generalization of
the equations in (5.1) can be made by the methods of tensor analysis.
For more general substitutions (g, t, p) = (g°, t’, p"), the form of
equation (0.4) in general is lost entirely, and the derivation of a
generalization of (5.1) becomes very involved. One can obtain equations



Integration of the Hamilton-Jacobi equation 1513

in partial derivatives with respect to the generating function of the
transformation S and the characteristic function H by making use of the
equation of Levi-Civita (0.5) and of the general theory of contact
transformations [9,16]. Even for n = 2, the equations contain about ten
thousand terms. It is much simpler to do this with the aid of the rules
presented at the beginning of this section by applying them to the
Hamilton-Jacobi equation of the most general type. It is quite possible
that some of the simplifications may here be connected with the introduc-
tion of the special mathematical formalism. Even though the idea of the
derivation of a generalization of equations (5.1) is relatively simple,
the complicated details of the derivations will not be given here.

It is not difficult to see that the method just described can be used
for solving the following important problem of finding all types of
characteristic functions H for which the equation p + H = 0 can be inte-
grated by the Hamilton-Jacobi method. Indeed, after the performance of
the contact transformation (g, t, p) - («, B) the equation (p + H)“-B=O'
which is expressed in terms of o and B, must possess a complete integral
V=ap, +... +ap,, i.e. the variables in V are separated in terms of
the new space coordinates and time (either a or P). Since not every
characteristic function H satisfies the corresponding equations (see the
preceding paragraph), the Hamilton-Jacobi method can not be used for
integrating every equation p + H = 0. This fact has been mentioned
already earlier in ?? ], but no method was given there for identifying
all integrable equations.

Since it is very difficult to solve the equations mentioned for S and
H, the following procedure is of interest. Let H = H0 + H1) | where the
equation with /| is integrable* and introduces constants a1, g1 Let
us change the variables in H1) to a1 and p‘1?, and let us separate
that part H; which corresponds to the integrable case. This process can
be continued. If H=H  +H + ... + Hy, where N is finite, then the
process will terminate at the Nth stage. If N is infinite then there
arise two questions. The first one: 1s it possible to represent the func-
tion H in this form? The second one: may one apply the Hamilton-Jacobi
method to such infinite expansions? It can happen that under reasonable
restrictions on H or for a limited class of trajectories, or for a finite
interval of time, the answers may be in the affirmative.

It must, however, be emphasized that some important problems become
integrable after a general transformation (g, t, p) - (¢’, t', p’') has

been made; here we have in mind certain variants of problems in celestial
mechanics [18-20].

* See the first footnote of this paper.
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Theorem 5.1. Tf equation (0.4) is integrable, so is its adjoint equa-
tion

_ Proof Indeed, if we solve p, = p. (g Yy = /3" for q' we obtain
q' = q'(p; i) =y’ /Bp This shows that the variables are separated in V'

The form of equation (0.4) makes it possible to write out the
canonical equations in which the independent variable can be any one of
the coordinates ¢'. It is sufficient for this to express equation (0.4)
in the form p; + Hi = 0, where Hi does not contain Py In the canonical
system the independent variable may even be the variable q"+1 which does
not occur in the left-hand side of equation (0.4). To show this, it is
sufficient to add to the left-hand side of equation (0.4) the partial
derivative p 4, = W/3¢"*! assuming that V depends also on q"'}

6. The methods developed in the preceding sections can be applied to
equation (0.1).

Theorem 6.1. If one transforms equation (0.1) from rectangular co-
ordinates x' to curvilinear coordinates g (that is, if one makes the
substitution ¢ = q') then the most general curvilinear coordinates qi
in which equation (0.1) 1s integrable by the method of separation of
variables are the ellipsoidal coordinates or their degenerations
(spherical or cylindrical coordinates).

This theorem states essentially that the Jacobi substitution [3] is
not only sufficient but also a necessary condition for the integrability
of equation (0.1)

Proof. For n = 3 this theorem was proved in [12]. For an arbitrary n
it can be proved by the method of mathematical induction for the most
interesting case r = 0. Since OH/Jt = 0, we have the case of Stéckel.

We make one additional hypothesis: the functions ¢'J(g') are linearly
independent. Since for the metric tensor corresponding to equation (0.1)
all components of the Riemann curvature tensor are equal to zero, one
has to solve the equations lel} 0 and thus find the type of the func-
tions ¢‘1 and the form of the substitution ¢ - q'. For orthogonal co-
ordinates only the following components differ from zero, and they are
independent of each other:

1 9%y 1 .. 98y 9y 1 . 98y 98y

— IR ! 1 i
Riyj= — 3 afap T8 o ogk TEE 5,0 gk
L o 98k 98 . i
4o ik kFE GG k=1, gt =1:g)  (6.0)
4 ag aq*
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PG N TR A W P VL
W72\ agiag  agiag) T 48 LVag d¢* og'
n

1., ( g )z 9g;; agii] 1 e O8u %8
e pld - ; — | — — v Li=1,... .
t7e [ o¢ 1T g g 1T % ,,21 87 o o (FI BT =he ) (62)

kA1, )

_ These expressions are so complicated that even the substitution of
g'! for ellipsoidal coordinates g¢', ..., q" yields zero only after quite
long manipulations which are here considerably abbreviated. For
ellipsoidal coordinates

i 4 ) = (¢ —ap) ... (¢ —a? 6.3
4 (qt"‘ql)--.(q.‘—'qn) y f(Q) (q al) (q an) ( )

Here of course, we have omitted qi - qi from the denominator. Further-

more
gy 8ii o 98 08y 8ii
T = T i v s g I3 = 3 — ™
a¢*0¢’ (¢ — M (¢ — ) o o (¢ — &) (¢ — ¢
i 00 985 By gkkagkk, i — &ii
dq’ ag" =@ —d d¢' 8¢* (@ — ") —dH

Thus, all the components leij = 0. Next

Pgy 0%y

aqjaqj - 6qi6qi -
We now establish the identity

e I - T S S ) I S A (/L S i (6.4)

If we make use of formula (6.3) and bring all fractions in the sum
(6.4) to the common denominator

n
1
1=
k>
then the numerator of the fraction becomes

n n

43 Soaeh™ ] (¢ =4 S bl @™ (@@ 1|
1 k>t

m=0 u=

Kitu m=0 nym (g2 n 1

_—:4an (qk—-—ql)(q1+ o +qn)+4bn—-1 1[ (qk——ql)
k>1 kST
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w?ere we have assumed that f(q') = bo(gh™ bn_l(qi)“‘l oot
q bo. This implies formula (6.4). Let us denote the last sum in (6.2)
by Si}' Since

U SN R A S
()(]k (]k — ,1' (h]k (IA' oy : {)(lla([.l («/"' g L K ’]j)
then
1 ’q T
e
St — — v T Y g,/\'1\'
y B il 2
dgdq ko1
ki
In view of (6.4)
Sy S TR L Bt gl o ng!  dg,
' 4 i Nt - M E
' 9907 4g =gy (g’ —4q") a7’ d(g"— ) og’

But the sum of the expressions in the two square brackets in (6.2)
is equal to - Sij' Hence, Rijij = 0.

The converse argument goes as follows. Let the functions in the last
row of the determinant ® be arranged so that in some regiom of ¢"

(In ¢™)" > (In ™1y k  2,....n--1)
This is always possible since the functions ¢”i are linearly inde-
pendent. But then it will be true that in some smaller region of ¢"
(ln ¢"1)' is either greater (Case 1) or less (Case 2) than (ln o™’
If one goes over to a new independent variable, dg*" = dq™. ¢"" in
Case 1, or dq*" = dq": f“z in Case 2, then in the nth row there will
stand the functions ¢*"*%(g™ = "k : p"(e*™ = 1), or ¢*™k(g™) = "k :
9"2(9*"™? = 1). Now one can substitute the determinant O with the trans-
formed nth row into Rikij = 0 and bring the obtained left-hand side to
a common denominator. If i, j and k # n, then for this choice of the
functions @*"', not one of the products of the six functions ¢*"' will
be a constant number. Because of the arbitrariness of ¢", the term which
does not depend on Q‘"i must be equal to zero. This term is equal to the
left-hand side of the equation REZ:}) =0 if ® has n - 1 rows and n — 1
columns. But for the case of n — 1 independent variables the theorem is
true by hypothesis. The same arguments can be made if on substitutes
functions of another variable g into the last row of the determinant O
after one has rearranged the variables, and thus after the proper change
of variables

((Pl)""lcp*l . q)lcp*l q*l 1

((pn)n—»?q:*n o q‘ncp*n q*n 1
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Let i =1, j = 2 and k = 3. The coefficient of (0, , ; )5, where
n-2,n-1,n 1S the cofactor in ® of the minor
(plq)*l (p*l i
O* = | 2p*? ¢*z 1
cpﬂ(p*S (p*S 1

in the equation R;,.. = 0 is equal to zero. For the determinant O*, and

its_complements, we obtain an equation which has been considered in
121 . Hence

n
© = Det) @, .o, 1 h=]] @F— )
k>1
if ¢i and ¢‘i are linearly independent. After a proper change of vari-
ables, we deduce
n
=11 o' —oh (6.5)
k+1
We obtain the differential equation for the functions @' by substitut-
ing g'' from (6.5) into R, = 0. Hence, for oF(k # i, j) we have
do* 1 dg*? = 4@ (@* — a,%) . . . (¢* — 2, ) (a{" = const)

Arguments analogous to those used in [12] yield ai(k) =a. (i, k=1,
.., n), and the following bounds for the functions:

PEa>E>an>. . >, >0 >,

Hence for the appropriate choices of a_, ao(k) and gt

1 .
6= 11 19 (4 —8(gh] 6.6)
k+1

However, if we select @i = qi, we obtain (6.3). Therefore, the vari-
13

ables g are ellipsoidal coordinates in the space x".

If r > 0, and if there exists a linear relation among the functions
(i =r +1, ..., s), then the Q* (i =1, ..., r) (Section 3) must be
either angles which express an axial symmetry of the coordinate system,
or they reduce to one of the Cartesian coordinates (compare cylindrical
coordinates), while the Q' (i = r + 1, ..., s) are degenerate ellipsoidal
coordinates (parabolic, spherical and so on). The corresponding proof by
means of mathematical induction, however, becomes very involved due to
the fact that one has to consider many subcases for large n. LeviCivita
(10] has shown that when r = n the coordinates Q' can be only rectangu-
lar Cartesian coordinates. This completes the proof of the theorem.



1518 M.S. Tarov-Iarovoti

The Liouville case of the integrability of equation (0.1) with n > 2
can hold only for the trivial case for rectangular Cartesian coordinates.
This follows from the equation Rlbij = {.

Thus the ellipsoidal coordinates are the most general ones for which
equation (0.1) is integrable. But this means that one can find general
conditions for h* and U of Section 3. Since neither the force function
of the n body problem (n > 2, h' =), nor the expressions for h' and !/
for the restricted circular and elliptical three body problem satisfy
these conditions, these problems cannot be solved by the method of
separation of space variables. This does not, however, imply that the
results obtained here camnot, be used in these problems. For example, one
can seek a solution by the method of expanding the function H (Section 5).
The results obtained are of practical value [19,20] if one takes for H,
the characteristic funciton of the twice averaged restricted three body
problem. Finally, one can find particular selutions of the indicated
integrable problems.

No investigations have yet been made of the problem of determining
the types of general contact transformations (p, ¢q) = (p’, q') which
make equation (0.1) integrable in the variables p’ and ¢’ (see Section 5}.

It is natural to pose also the problem of finding the most general co-
ordinates for which the canonical equations with the characteristic equa-
tion (0.1) have integrals which are quadratic in p; (see Section 3). If
n = 2, and the coordinates are orthogonal, then they are elliptic co-
ordinates (Section 3). But for n ™ 2, and for nonorthogonal! coordinates
with n >»2, the question is still open.

In conclusion I express my deep gratitude, for valuable advice re-
ceived, to G.N. Duboshin, V.V. Bumiantsev, P.K. Rashevskii, I.S.
Arzhanykh, A.A. Bogoiavlenskii and V.G. Demin.
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