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The works of Aksenov, Grebenikov, Demin [d and Kislik Ed on the 
analytic theory of the motion of artificial satellites of the Earth re- 
veal the importance of a general investigation of canonical systems 
that can be integrated by the method of separation of variables. 

Below is given a relatively simple method for the construction of 
the complete integral with separated variables of the Hamilton-Jacobi 
equation. The type of the equation can be arbitrary. Special attention 
is given however, to the case when the left-hand side of the equation 
Is the sum of homogeneous polynomials of the first and zero degree with 
respect to the impulses, while the coefficients of these polynomials de- 
pend not only on the space coordinates but also on time. Under rather 
weak hypotheses, the considered method yields necessary and sufficient 
conditions for the integrability. l These conditions are imposed on the 
characteristic function of the problem. A method is given for selecting 
all those equations which can be integrated after a change of coordi- 
nates by means of a contact transformation. It is proved that if the 
Hamilton-Jacobi equation Is of the same type as the equation of motion 
of a material point In an n-dimensional Euclidean space, then it is in- 
tegrable only in ellipsoidal coordinates and its degenerations. 

After Jacobi [3, p. 61 had established, in 1843. by means of a 
rigorous mathematical analysis, that the principal Hamilton function 

l For the sake of brevity the words “by the method of separation of 
variables” will be omitted in the sequel. 
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can be found not just from two equations, as Hamilton had stated, but 

even from just one first order partial differential equation, there 
#rose the problem of solving this ec~uatlon. The method of separation of 
variables was found to be quite effective for certain types of equations. 
Jacobi showed in the work just mentioned that the Hamilton-Jacobi equa- 
tion of the type 

fs integrable not only in rectangular coordfnates XI* . $ + I r”, but also 
in ellipsoidal coordinates, The representation of the xi in terms of 
ellipsoidal coordinates he called a “remarkable” substitution. 

Soon after this, there arose the problem of integrating a Hamilton- 
Jacobi equation of a more general type* 

In f64? Liouvflle found a case when the equation is integrable. He 
proved also that equation (0. I), with n = 2, can be integrated only in 
terms of elliptical coordinates and their degenerations (polar coordi- 
nates and similar ones). 

In 1865, V. 6. Imshenetski’s candidate* s thesis, and in 1869 his 
doctor’s dissertation 141, were published in which the method. of separa- 
tion of variables was applied not only to the Hamilton-Jacobi equation 
but to a gensral first order partial differential equation. His idea is 

used in this paper. 

In 1880 Morera E51 found two cases of fntegrabiltty of euustfon tO.Zf 

with n = 2. Independently of him, the ssme cases of integrabilfty were 
found by Stiickel I61 in 1891. In this work StEckel gave also a quite 
general case of integrability for equation (0.2) which was a generaliza- 
tion of Lfouville*s case. StKckel t43 proved in 1893, that this case 1s 
the moat general one for equation (6.2) which contains only squares of 
the impulses 

n. 

Stgckel’s proof of the necessity and sufficiency for the integrability 
of equation (0.3) can be found in the monographs by Charlier [81 and by 
tar’ e f91. 

_ll_-______..---~l . . ___-l _____~~__ 
l In this paper the symbo2s employed in tensor analysis are used. 
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After the appearance of Stiickel’s results there remained the problem 

of finding cases of integrability of equation (0.2) which contained Dro- 

ducts of impulses to different degrees, impulses to the first power, and 

the time explicitly in the characteristic function 

if* = p + l!2 gijpipj + flip, - II = 0 (p == X i at; i, j = 1, . . ., R) (0.4) 

In 1904 Levi-Civita gave, in a letter to St&kel [lo], necessary and 

sufficient conditions for the integrability for equation (0.2). His Con- 

ditions were expressed in terms of a system of partial differential 

equations for the characteristic function H =H(q’, . . . . qnt pI, -wLI P,) 

of the problem 

(i#j; i, i= 1, . . * ) n) 

This system is valid also for equation (0.4) if one denotes its left- 

hand side by ff and if t is treated as one of the space coordinates. 

Levi-Civita substituted into this system the characteristic function 

of problem (0.2) and obtained in equations (0.5) a sum of homogeneous 
polynomials in pi of degrees four, two and zero. Because of the arbi- 

trariness of the constants of integration in the pi, all the coefficients 

in these polynomials had to be zero. Equating to zero the coefficients 

in the fourth degree polynomial, one obtains a system of partial differ- 

ential equations for Sij. Equating to zero the coefficients of the terms 

of the second degree in pi and of the free term, one obtains partial 

differential equations for g ij and U. From this Levi-Civita deduced the 

theorem: if equation (0.2) is integrable then the eauation is integrable 
with u = 0, i.e. in the absence of a force, An analogous argument can be 

made also for equation (0.4). 

Levi-Civita separated the integration of the equations for gij into 

several cases. One of these cases, for arbitrary n, could be carried out 

completely. This case differs from Stiickel’s case, but it has little use 

because for it fl is necessarily zero. The consideration of the remaining 

cases is exceptionally involved; for this reason Levi-Civita confined 

himself to the case when n = 2, and he confirmed once more the results 

obtained by Morera c51 and Stickel L6.71. 

In 1908 Dali’ Acqua gave explicitly all the partial derivatives for 
ij 

g # which can be obtained from the equations of Levi-Civita, and in- 

vestigated them for n = 3. He obtained all four types of integrable 

equations (for n = 2 there exist three types). In our work [121 it is 

proved. on the basis of the integrable types of Dsll' Acqua that the 

existence of the remarkable “substitution of Jacobi” is not only 
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sufficient but also a necessary condition that equation (0.1) may be in- 
tegrable by the method of separation of variables when n = 3. 

In 1911 Burgatti [ill , on the basis of Levi-Civita’s [lo], and Dali’- 
Acqua’s [ill studies, gave explicitly the expressions for the impulses 
in terms of arbitrary constants of integration Cxj, h, which are the most 
general ones when n = 2, 3, and these expressions appear to be the most 
general ones for any n. He, however, was unable to prove that they 
actually are the most general ones for n > 4. The expressions of Dali’- 
Acqua [ill and of Burgatti [13; are not given because they are special 
cases of those found in Section 1. 

It has not been established that the cases of Burgatti are the most 
general ones for any n. It is true that a number of cases of integra- 
bility of various generalizations of the Hamilton-Jacobi equation have 
been found. We regret that a complete listing of the works on this topic 
is not available; neither does there exist a survey article on this 
subject. We have mentioned briefly only the works known to us. 

G.N. Duboshin, in his additions to the translation of Moulton’s book 

Cl41 ) mentions that Moiseev has extended the case of integrability of 
Liouville to a characteristic function of the type H = Tt - Te - u 
(To # 0). Demin [151 generalized Stiickel’s case to apply to an equation 
that contains the impulses linearly. 

But the possibilities here are limited. For example, Siegel [161 
proved that in some quite general cases there does not even exist a con- 

tact transformation (p, q) - (a, p) which can be expressed analYticallY 

(a, e are constants of integration). 

1. We shall establish new cases of integrability of equation (0.4). 

‘Theorem i. 1. Let. an integer r be given (0 <r < n), and let I-’ con- 

tinuous functions 6’j( q’) (i, j = 1, . . . , r), and (n - r)* continuous 
functions oLJ( ql) (i, j = r t 1, . . . , n) be given such that each of 

them depends only on one variable 

r 

i and that the determinants 

0 = &t 11 @i 11 and III = Det 11 ?iJ’ ( are different from zero. 

Furthermore, let these be given arbitrary continuous functions 

@j (qi), ai*’ (qi), uik (qi) , + (qi) (i = r + 1. . . , n; j = 0, . , r; k, 1 = 1, . . . , r) 

and arbitrary continuous functions of time 

CkZ (0, cii (t), c* (t), I) (t) (i = r + 1,. . . , n; k, 1 = 1,. . . , r) 

Then the Hamilton-Jacobi equation (0.4) with the coefficients 
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gii = & i i ck’ (t) E+kt3p + (i, j=l,..., r) 

k=l 1-l 

m=r+l u=r+l k=l I=1 

gij = _ &. ) (i.2) 

u=rtl k=l 

g” = -g ; cuu (t) a+” (i = r + I, . . . , a), gij=O (i#i;i,i=r+i,...,n) 

u=rt1 (1.3) 

&fl ct) @k@l#o I i i Ck (t) efk - 
k=l Z=l j=l k=l 

i; i i i; c”” (t) w”eikej’ (Vk6”’ - Pl) 6” + (1.4) 

m=r+lu=rtl k=ll=l j=l 

+ & i i i; cuu (t) almu@ik(26mk6m - csrnk) (i = i,..., r) 

m=rtl u=rtl k=l 

u=r+l k=l 1=1 u=r+l 

(i = r + 1, . . , n) 

+ $ i i Ck (t) @mk6mo+ qI (t) - 

k=l m=l 

$ i i $J i ,jj tt) @+jmk@ (&k+*’ _ e& i 

t=rtl j=r+l k=l I=1 m=l u=l 

+ --& i; $ i i ,jj (t) mijemk (2~ik~i0 _ aik) 

f=r+l j=r+l k=l m=l 

i p (t) a*j [(go)2 _ $1 

gikl) Pw” + 

iP- 

(1.6) 
i=rtl j=rtl 

where Oij and eij are the cofactors 
determinants @ and 0, is integrable 
form 

of the ith row and jth column of the 
and has a complete integral of the 
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v = an+, -t 1 pdt $- $J \ pidqi (p=av/at, J$=av/aJ) (1,7) 
I i-1 ” 9% 

where 

P = - i i CkL (4 am - i cU” (5) a, - i Ck (t) ak + I# (t) (1.8) 
k=l I:-1 U=r+l k=l 

pi = f+” ( qi ) + 4 ft” ($) tLk (i = 1 , . , T) (1.9) 
k=l 

r 

pi = fbi” (qi) + x eik (qi) ak + 

k=l 

-f i i; C dk’ (qi) a,& + i dk (9’) ah. + Jzi (qi) $- i qiu (9’) q&]“’ (1.10) 
k=l I=1 k--l u=r+1 

J 

Proof. We shall make use of the results of Imshenetskii [41, and we 

shall show that the elimination of the arbitrary constants al, . . ., a,, 

from equations (1.8) to (1.10) leads to an equation of type (0.4), the 
coefficients of which are determined by formulas (1.1) to (1.6). Indeed, 

equations ( 1. 91 permit us to express a,(j = 1, . . . , r) !? terms of 

pi(i = 1, . . . . .r) and of the elemenrs of the matrix /I 6[-’ \I-’ which 

exists hecause of hypothesis the l~ei ;/ 0’; j/ = Q f 0. But then equations 

(1. lo), in which the ai(i = 1, . . . . r) have been substituted, make it 

possible to find the au(u = r + 1, . , . , n) since by hypothesis 
Det 119 ij /I = 0 f 0. The substitution of the expressions for ai(i = 1, 

. . . , n) into (1.8) will yield an equation of type (0.4)) whereby (as can 

be shown by means of quite lengthy calculations) the still undetermined 

coefficients of this equation can be found with the aid of formulas (1.1) 

to (1.6). It remains only to verify that Det 11 2*1’/&‘&. 11 y 0. But 
this determinant, for equations (1.9) and (1. lo), is equil to 4 0 0, where 

u= i-+1 h’-:l 

because infinitely large values of p, and ak are not considered, and be- 
cause the gUk are continuous. 

and 0 y 0 by hypotheses. 

Thus Det II a2v++xj I/ f 0 since 0 f 0 

Equation (1.7) makes it possible to find E’ by means of a simp1.e 
quadrature because each impulse depends only on one coordinate. This 

proves the theorem. 
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‘Ihis theorem establishes the integrability of the Hamilton-Jacobi 

equation with a characteristic function depending explicitly on time. 

This case has not been considered in the literature known to US. ‘Ihere- 

fore, a comparison with known cases can be made only for N/at = 0. 

An analysis of [5-7, 10,11,131 h s ows that the above expressions for 
ii, I! (hi = 0) coincide with the most general ones for n = 2, 3, and 

!?th the expressions found by StSckel hl (r = 0), Bxgatti El31 (r # 0), 

and hjoiseev [14I for arbitrary n. If hi f 0 expressions (1.1) to (1.6) 

include those found by Demin [UI (here r = 0). 

One seeming generalization consists therein that the functions I)“, 
@ii, _ cj and v are assumed to depend not only on one variable, but on 

all t, q’, . . . , qn, and that they are subjected only to the integrability 

conditions 

dpi I dgj = apj f dqi, ap I aqi = d/Ji ! dt 

But this case can be reduced by means of a change of variables to one 

considered earlier (for more information about this substitution see 

Section 3). 

‘Ihe fact that the expressions found here cover all known cases is not 

an accident. 

2. Theorem 2.1. In order that equation (0.4), which has a positive 

definite quadratic form gijpiqj and continuous coefficients g’j, hi and 

U, may be integrated by the method of separation of variables, it is 

necessary and siffucient that the coefficients g’J, h’ and II have the 

form indicated in Theorem 1.1. 

Proof. We shall base our arguments again on ideas of Imshenetskii. 

It is known [41 that in a complete integral the arbitrary constants a 

are considered as depending on t, gl, . . . , q” (otherwise one obtains 

either a general or a particular integral). Therefore, if one solves the 

Hamilton-Jacobi equation (0.4) for each of the variables p, pi and 

assumes that V is to be found in the form 

I’ == 1-o (t) + I” ((I’) -I- . . .j- P (t/n) 

then the left-hand side will contain functions of only that variable 

with respect to which the differentiation of V is performed, while the 

right-hand side will involve all variables. But all these variables, 

with the exception of the one on which the left-hand side depends, can 
be assumed to be equal to the initial values because of their independ- 

ence. But then, if Det 11 a2V/&i&j 11 f 0. the arbitrary constants which 

are in p and pi can be chosen so that p and pi will take on their initia 



1506 M.S. Iarov-Iarovoi 

values p” and pi’, 

Pi0 

whereby the set of initial values to, qoi, p” and 
must satisfy equation (0.4). Since the form g’jp .p is positive 

definite in the pi, gLc # 0, and for each pi there e:iLts a Quadratic 
eQuation from which it follows that 

pi = *,i + 8 i t 1/ 
0 egi+ q+ eoi (2.1) 

Besides that 

P==~a+~1+QlJ (2.2) 

All remaining arguments will be made for the case when the sign in 
front of the radical in (2.1) is plus. Analogous results hold when the 
sign is minus. 

In formulas (2.1) and (2.2) the subscripts indicate the degree of 
the homogeneous polynomial in pi0 and p” which is denoted by the given 
letter. The initial value p” is given by the formula 

pi = _ $ g;jpiOpje _ hO'&O c 00 (2.3) 

. 

where the index 0 indicates that in ~‘1, h’ and U we have set t = to 
and qL = q,,‘. 

If one substitutes expressions (2.1) and (2.2) into equation (0.4) 
then one obtains an identity in t, qi, to, qoi, poi if one puts p” from 
formula (2.3) into 8,’ + 8,’ + eoi, which we shall denote by ~2~ + 

91 it poi in what follows. The identity now takes the form 

and determines the form of the coefficients gal, h’ and u for which the 
variables in V are separated. The analysis of this identity depends 
mainly on whether the expressions q+’ + 91’ + q. ‘ under the radical are 
perfect squar6s or not. 

it 
In the general case one may assume that qgL + 

'pl 
qoi is a perfect square when i = 1, . . . , r. Then 

a,* + ftoi + v/‘P;+ ‘pli + cpo’ = Xii + xoi 
In view of this, identity (2.4) takes on 

r r 

e2+e1+eo+ $2 2 gij(xli+ 
iL1 j=1 

(i = 1, . * ., rl 

the form 

(2.5) 
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1. j=r+l 
i>j 

+ 2 hi(6,'+6,')+ 2 hiI/cp,'+cp,'+q,i-U=O 
i=r+1 i=r+1 

(2.6) 

Because of the arbitrariness of the initial values of the impulses, 
it follows that 

gii = 0 (ifj, i,j= r+ 1,. . .,n) (2.7) 

and, therefore, 6,’ 

P,$. **. . P,O. 

will depend only on Plo, . . . , pro, and not on 
On the other hand, for the same reason q2’ does not con- 

O ta!n products pl en O(l 7 I; 1,. II = T + 1, . . . , n). Hence. p2’ + q12 + 
qo’ is equal ( -‘“i t x1’ -6,’ t x01)2 only when x1’ also does not de- 

pend on p,+i, . . . . p,‘. The introduction of the notation 

r 

x; = 2 t)‘j (qi) p:, 

j=l 
r 

x; = Iti0 (q’) (i = I, . . ., r) 

6,’ = x fJ*j (tj) p!, #; = (t”O (q’) (i = r + 1, . . ., n) 
j=l 

r r r n 

( qi) pkop/’ + 2 2 uikl b+) Pk"Pmo + 
k-1 m=r+l 

n 

(i = r + I, . . ., n) 
m-r+1 

r n 

‘p: = 2 aik ($1 pko + x aim (qi) pm0 (i = r f 1, . . ., 4 
k=l m=r+l 

(i = r + i, . . ., n) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.121 
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fja” _$ i CkZ 0) PkOPlo- B i ckm (t) PkOPmO - i cmm (1) (pmo)a (2.13! 
k=l I=1 

_ 
k-1 m=r+1 m=r+1 

r n 

(2.14) 

and the equating to zero of the coefficients of the radicals and of the 
initial Values of the impulses (because of their arbitrariness) yields 

SYstems of linear equations for the successive determination of the g’j, 
hi and U. 

In order to find the gii (i = r t I, . . . , n) it is sufficient to 
equate to zero the coefficients of (pi’)’ (i = r t 1, . . . , n) in equa- 

tion (2.6). Solving these equations for gii, we obtain a formula of 

type (1.3). If we equate to zero the coefficients of pi’, pjo (i = r + 1, 

. . . , n; j = 1, . . . . r) then we derive equations for the gii (i = t- t 1, 

. . . ) n) of the just described form. Hence c kl( t)) Dik* (q’) (k = l,...,r; 

1 = r.t 1, . ..) n) must be linear combinations with constant coeffi- 

cients, of &(,) and &(qi) (i, 1 = r t 1, . . . . n). The coefficients 

of gij (i = 1, . . . , r; j = r t 1, . . . , n) are determined by the equations 

which express the vanishing of the coefficients of the radicals; this 

leads to expressions of type (1.2). Expressions of type (1.1) are ob- 

tained from the equations which insure the vanishing of the coefficients 

Of pk”pEo (k, 1 = 1, . . . . r) by substituting into them the just deter- 

m_ined coefficients gJJ, g&J (i = I, . . . , r; j = r + 1, . . ., n). The 

vanishing of the coefficients of,the first powers of pi0 (i = r + 1, 

. . . ( n) yields expressions for h’ (i = r + 1, . . . , n) of type (1.5); 

while the vanishing of the coefficients of the first Powers of pi0 

(i = 1, . . . ) r) yields expressions for hi (i = 1. . . ., r) of type (1.4). 

Finally. the term which is free of pi0 gives an expression for the force 

function U of type (1.6). 

In this manner expressions are found for all the coefficients which 

differ from expressions (1.1) to (1.6) only in the fact that their left- 

hand sides do not depend on the initial conditions to and poi, while 

their right-hand sides, formally speaking, do depend on them. BY assign- 

ing to these intial terms some numerical values, we obtain formUlaS 

(1.1) to (1.6). 

Since Det 11 a2V/~gi&. (1 =A6@ (Section 1) is not zero, 0 f 0 and 

8 f 0. The theorem has thus been proved. 

'lhe method of finding the complete integral used in this proof leads 

to the same results as the equations of Levi-Civita, in the derivation 

of which it is also assumed that %f/%i f 0 [lOI; our method is, 
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however, considerably simpler. Naturally, it can be applied to 
Hamilton’s equation of the most general type, as well as to an equation 
or a system of partial differential equations of any order. Besides 
that, this method does not require the solving of the canonical equa- 
tions as was suggested by Imshenetskii [41. 

From Theorems 1.1 and 2.1 it follows that the cases of EIurgatti 
(;xr/at = 0) are the most general ones. 

3. Expressions (1.1) to (1.6) can be considerably simplified even for 
the general case mentioned at the end of Section 1. This can be done by 
introducing new independent coordinates Q’, of the time T and of the 
principal function W, the partial derivatives of which with respect to 
the old coordinates and time are given by the formulas 

aQf -=-cf aQi cj 
-=6 

aQi 
at I a$ 

-co aQk aQk 
’ a41 

aQk ak 
) at = ‘7 7 = O* Y$- = 1 

aw 
-=P= p-&q, 

aw 
at aqi 

= P, = pt - fttO, T=t 

(blk=i if k=l,O if k#l;i,j=i ,..., r;k,l=r+l,..., n) 

It is not difficult to verify that the conditions of integrabilitg 
are here satisfied. 

But then the corresponding Hamilton-Jacobi equation 

P + ‘1% Gij PiPj + HiPi - u* = 0 (3.1) 

has the coefficients 

* n 

Gij = zcij (T) - _& 2 2 cl1 (T) cDkrckij (Qk) (i, j = 1, . . ., r) 

k=r+l I=r+l 

G"=$ i ckk(T)(Do (i = r $ 1, . . ., n) 
k= r+l 

G’f = 0 (i #j, i = 1, . . ., n; j = r + I, . . ., n) 

Hi=-+ i i cl2 (T) Dk’aki (@) (i = 1, . . ., r) 
k=r+l I=r+l 

-Hi = 0 (i = r + i, . . ., n) 

lJ*=& i i ,ij (T) @ii@ (Qi) 

i=r+l j=r+l 

The complete integral of equation (3.1) is given by formulas 
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w = 5 PdT + i i pidQi, 
T i=l Qi 

Pi = ai 

n 

ck’ (T) akal - 2 cjj (T) aj 

k=l I=1 j=r+l 

(i=i,. r) . ., (34 

cjk’ (Qj) akaL + i dk (Qj) ak + $ (Qj) -+ i 
k=l 1~1 k=l 

(pj”’ (Qj) a,]“’ 
m=r+1 

(j==r+l,...,n) 

Hence, such a change of variables simplifies considerably expressions 
(1.1) to (1.6). Formulas (3.2) show that the new impulses pi (i = 1, 
. ..) r) retain their constant values; hence, coordinates Qz (i = 1,. . . , r) 
are cyclical coordinates. 

This analysis shows how important it is to find all those types of 

dependences of the principal function V on the arbitrary constants a of 

integration for which the, elimination of these constants from p=aV/at 

and p i = h/a, i leads to an equation of type (0.4). The complete solu- 

tion of this important problem, posed already by Burgatti [131, presents 

in the general case seemingly enormous difficulties, and is even im- 

possible in the class of analytic functions [161. 

4. we consider the following generalization of the results of 

Sections 1 and 2. As before, let V and p be given by formulas (1.7) and 

(1.8). For the pi (i = 1, . . . , r) we have the formulas described at the 

end of Section 1, but the ai (i = r + 1, . . . , n) are sums of homogeneous 

polynomials of degree not greater than two in pi (j = 1, . , . , n) the 

coefficients of which depend on generalized coordinates and time. In 

this case the dependence of the pj on the ai (i = 1, . . . , n) will be, 

in general, irrational and even transcendental since, even when n = 2, 

one has to solve an algebraic equation of fourth degree in order to ob- 

tain this dependence. 

Furthermore, the conditions of integrability [lOI 2pi/aqj = apj/Jqi 

have to be fulfilled. these conditions are equivalent to equating the 

Poisson brackets equal to zero, i.e. (ai, aj) = 0 (i, j = 1, . . . , n). 

In these equations all coefficients of the various powers of pi are 

zero because the constants of integration, which occur in the pi, can 

take on arbitrary values. This yields partial differential equations in 

gk’J, h,’ and Uk if ak = l/2 gkijpipj + hkipi - II, (k = r + 1, . . . . n); 

even for n = 2 (gk12 f 0) these equations become very complicated; if, 

however, gk l2 = 0 we obtain the known Liouville-Stgckel case. 

?he possibility of another type of generalization is given by the 

solution of the Hamilton-Jacobi equation for the inertial motion of a 
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material particle in a rotating system of coordinates 

‘I2 (P," + P,Z + P,") + n (YP, - XP,) = h 

which cannot be integrated by the methods presented above even though 

the complete integral of the equation 

P + l/2 (p," + pu2 + p,") + n (yp, - xp,) = 0 

can be found by the method described at the end of Section 1. From it 

one can obtain the complete integral of the first equation; the depend- 

ence of V on a is transcendental and very complicated. Therefore, the 

“usual ” substitution p = - h can considerably complicate the integration 
of equation (0.4) even when N/& = 0. 

The formulas of Section 1 show that the equations of the character- 

istics (the canonical equations) for integrable equations of type (0.4) 
have first integrals which are either quadratic or linear in the im- 
pulses. This fact makes it possible to solve effectively certain prob- 
lems of stability for such systems by the method of combining first 

integrals (i.e. by the method of N.G. Chetaev). This method can be 
applied also to the .system described in this section. 

5. Again,, let the Hamilton-Jacobi equation (0.4) be given with the 

functions g’j, hi and II of ‘t and 4’. It is required to determine whether 
this equation can be integrated by the method of separation of variables. 
The easiest way to answer this is with the aid of a method which was 

used already by us in the proof of ‘lheorem 7.1, because this method does 
not require the verification of the very complicated expressions for 

ij 
g ’ h’ and II found in Section 1. ‘Ihis method can be reduced to the per- 

formance of the following operations: 

a) We solve equation (0.4) for each of its partial derivatives p and 

Pi’ 

b) Each of the coordinates qi (and time) except the one which is on 

the left-hand side, is equated to its initial value; this results in 

equating the impulses, which appear on the right-hand side, also to 
their initial values. Hereby, the initial values of the coordinates of 

time and of the impulses must, naturally, satisfy equation (0.4). 

c) We integrate the expressions obtained with respect to that vari- 

able which occurs in the left-hand side, and add the result, construct- 

ing in this manner the principal function V. 

d) We substitute the partial derivatives p and pi into (0.4) and 
verify whether or not (0.4) b ecomes an identity 0 = 0 if the initial 
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values satisfy the condition given in subsection (b). In the first case 

equation (0.4) can be integrated by the method of separation of vari- 

ables, in the second case it cannot be so integrated. 

If equation (0.4) cannot be integrated by the above mentioned method 

then one has to try another procedure: one can check whether it can be 

integrated by the proposed method after a change of variables. For ex- 

ample, the two body problem can be integrated by this method in polar 

coordinates, but not in rectangular coordinates. There arises the 

general question: is it possible to give criteria on the basis of which 

one can determine whether or not there exist such transformations of 

variables (q, t, p) - (q’, t’, p’) that the equation is integrable in 

the variables (q', t', p’)? 

Let us first analyze the case when aH/at = 0, and when we assume that 

in equation (0.2) the space coordinates q only are transformed into the 

coordinates q’(q - q’). In this case one may make use of a theorem of 

Levi-Civita 1101 which states that if equation (0.2) is integrable then 

it is integrable if II = 0. According to results obtained in tensor 

analysis (see, for example, [171), when q - q’ then 

R .,_aq’ aqk aqi a9’j.j ,, 
l'k'r']' aq,v &iF c q lkv (5.U 

when Rlkij is the Riemann curvature tensor corresponding to the metric 

g'l,,,yhile R,~,~,~.~ is the Riemann curvature tensor for the metric 
'1 I 

g - Equations f5.1) solve the stated problem. Indeed, into their 

left-hand sides one can substitute expressions gIi'j' of Section 3, and 

into the right-hand sides expressions Rlki. in terms of the original co- 

ordinates which are known. Making use of t e h formulas for the trans- 

formation of the,g'j, one must eliminate from equations (5.1) all deri- 

vatives aq’/aq” , of which there are nz, while the number of equations 

in (5.1) is at least n3 (Section 5). 'Ihe derived equations for the func- 

tions q and a with indices can be solved by generalizing the method of 

"fixing the extraneous variables" which was mentioned in Section 2. Sub- 

stituting the expressions found for Q and a into.qquations (5.1), and 

solving them for each of the derivatives a~'/&" , one can obtain the 
formulas for the transformation q - q’. One can obtain analogous results 

also in the more general case (Section 3) when there exist only square 

integrals which are in the involution since the mentioned theorem of 

Levi&vita is valid here also. 

For substitutions of the type (q, t) - (q’, t’), a generalization of 

the equations in (5.1) can be made by the methods of tensor analysis. 

For more general substitutions (q, t, p) - (q’, t’, p’), the form of 

equation (0.4) in general is lost entirely, and the derivation of a 

generalization of (5.1) b ecomes very involved. 0ne can obtain equations 
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in partial derivatives with respect to the generating function of the 

transformation S and the characteristic function H by making use of the 
equation of Levi-Civita (0.5) and of the general theory of contact 

transformations [9,161. E ven for n = 2, the equations contain about ten 
thousand terms. It is much simpler to do this with the aid of the rules 

presented at the beginning of this section by applying them to the 

Hamilton-Jacobi equation of the most general type. It is quite possible 

that some of the simplifications may here be connected with the introduc- 

tion of the special mathematical formalism. Even though the idea of the 

derivation of a generalization of equations (5.1) is relatively simple, 

the complicated details of the derivations will not be given here. 

It is not difficult to see that the method just described can be used 

for solving the following important problem of finding all types of 

characteristic functions H for which the equation p + H = 0 can be inte- 
grated by the Hamilton-Jacobi method. Indeed, after the performance of 

the contact transformation (q, t, p) - (a, f3) the equation (p + H),,p=O, 
which is expressed in terms of a and p, must possess a complete integral 

V = alPI + . . . + an&, i.e. the variables in V are separated in terms of 
the new space coordinates and time (either a or p). Since not every 

characteristic function H satisfies the corresponding equations (see the 
preceding paragraph), the Hamilton-Jacobi method can not be used for 

integrating every e 

p” 
ation p + H = 0. 'Ihis fact has been mentioned 

already earlier in 161, but no method was given there I"or identifying 

all integrable equations.. 

Since it is very difficult to solve the equations mentioned for S and 

H, the following procedure is of interest. Let H = H + H(l), where the 

equation with Ho is integrable* and introduces const:ts a(l), p(l). Let 

us change the variables in H(" to a(l) and p"), and let us separate 

that part N, which corresponds to the integrable case. 'Ihis process can 

be continued. If H= H, + H, + . . . + HN, where N is finite, then the 
process will terminate at the Nth stage. If N is infinite then there 

arise two questions. 'Ihe first one: is it possible to represent the func- 

tion H in this form? The second one: may one apply the Hamilton-Jacobi 

method to such infinite expansions? It can happen that under reasonable 

restrictions on H or for a limited class of trajectories, or for a finite 
interval of time, the answers may be in the affimative. 

It must, however, be emphasized that some important problems become 

integrable after a general transformation (q, t, p) -. (q’, t’, p’) has 

been made; here we have in mind certain variants of problems in celestial 

mechanics [18-20). 

- 
. See the first footnote of this paper. 
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Theorem 5.1. Jf equation (0.4) is integrable, so is its adjoint equa- 

tion 

Proof. Indeed, if we solve pi = Pi (qi) = ?hr/;3,’ for gi we obtain 

9 ’ = Q’(pi) = ~~‘/~~i. Thi s shows that the variables are separated in V’. 

The form of equation (0.4) makes it possible to write out the 

canonical equations in which the independent variable can be any one of 

the coordinates q’. It is sufficient for this to express equation (0.4) 

in the form pi + 1’; = 0, where Hi does not contain pi. In “,$ canonical 

SyStea the independent variable may even be the variable q which does 

not occur in the left-hand side of equation (0.4). To show this, it is 

sufficient to add to the left-hand side of equation (0.4) the partial 

derivative p,+l = >V/& n+1 assuming that V depends also on p n+1 . 

6. ‘he methods developed in the preceding sections can be applied to 

equation (0.1). 

Theorem 6.1. If one transforms equation (0.1) from rectangular co- 

ordinates x1 to curvilinear coordinates qi (that is, if one makes the 

substitution q - q’) then the most general curvilinear coordinates qi 

in which equation (0.1) is integrable by the method of separation of 

variables are the ellipsoidal coordinates or their degenerations 

(spherical or cylindrical coordinates). 

7his theorem states essentially that the <Jacobi substitution Cd is 

not only sufficient but also a necessary condition for the integrability 

of equation (0.1). 

Proof. For n = 3 this theorem was proved in [121. For an arbitrary n 

it can be proved by the method of mathematical induction for the most 

interesting case r = 0. Since &f/at = 0, we have the case of Stiickel. 

We make one additional hypothesis: the functions cp’-‘(q’) are linearly 

independent. Since for the metric tensor corresponding to equation (0.1) 

all components of the Riemann curvature tensor are equal to zero, one 

has to solve the equations Rlkij = 0 and thus find the type of the func- 

tions 0’1 and the form of the substitution q - q’. For orthogonal co- 

ordinates only the following components differ from zero, and they are 

independent of each other: 

1 a’gii 1 

Rikij = - 2 aykaql -+,g 
ii agii ‘gii 1 . . agii agjj 

v k -t 7 gjf 7 - 

w 84 w aq 
k+ 

(i +j,i #k, k # i; i,j, k .= 1, . . ., n; gii = 1 : gii) (6.1) 
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+~gji[(!$)*+$$]_: i gkkf$-f$-(is;i; i,j = 1,. . ., n) (6.2) 

k=l 
k#i. j 

. ,These expressions are so complicated that even the substitution of 

g ” for ellipsoidal coordinates q’, . . . . q” yields zero only after quite 
long manipulations which are here considerably abbreviated. For 
ellipsoidal coordinates 

ii = 4f (4) 
g (q’- ql) . . . (qi - q”) ’ 

f (qi) = (q’ - lz1”) . . . (q’- an%) (6.3) 

Here of course, we have omitted qa - qL from the denominator. Further- 
more 

eii gii . gii -- 
aqkaqj - # - qk) (+ - 4) ’ g 

11 aBif agii _ 

aqJ aqk (J _ qjj tqi _ qk) 

jj aQii 'gjj gii kk agkk a% - gii 
g 7 -- zz 

aq3 aq” (qi - qj) (qj - qk) ’ g 
---+-= 
a91 aqk (qj - qk) (q’ - qk) 

Thus, all the components R~kij = 0. Next 

@gii a'i?jj 

-= 

aqh3qJ 
--7-T-=() 

a$a$ 

We now establish the identity 

g” + . . . + gnn = - 4 (a12 +. . . + a,“) + 4 (41 + . . . + qn) (6.4) 

If we make use of formula (6.3) and bring all fractions in the 
(6.4) to the common denominator 

sum 

k>l 

then the numerator of the fraction becomes 

4 i i b, (qu)” ii (qk - q’) =4 ;: b, 

m=o u=1 k:,l 
k.liu 

n 

VI-0 

(ql)” be-;. . . Q’ i 
(92)” . . . q$ 1 

. . . . . . . . . . . . . . . . . . 

(q’“)“-2. . qn 1 

n 

= 

. . . 
= 4 b, n (qk - ql) (q’ + + qn) + 4 bn-, 11 (qk -- q’) 

k>l k>l 
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wpere we have assumed that f(q’) = h,(q’j” + b”_l(qt)“-l + . . . + Ii,, 

qL + b ,,. This implies formula (6.4). Let us denote the last sum in (6.2) 
by Si,. Since 

then 

In view of (6.4) 

But the sum of the expressions in the two square brackets in (6.2) 
is equal to - ‘ii. Hence, Rijij = 0. 

The converse argument goes as follows. Let the functions in the last 
row of the determinant 0 be arranged so that in some region of q” 

(In (plrk)’ > (In qn”+‘)’ (h- 2, . . II -- 1) 

This is always possible since the functions 9”’ are linearly inde- 

pendent. But then it will be true that in some smaller region of 9”. 
(In 9”‘) ’ is either greater (Case 1) or less (Case 2) than (In T""j '. 

If one goes over to a new independent variable, dq*” = dq”. 9”” in 

Case 1, or dq*” = dq”: n2 in Case 2, then in the nth row there will 

stand the functions Q* 
“f(q”) = 9”k : T”n(ve”” = I), or T*“k(q”) = ?“k : 

Qn2(Q.n2 = 1). Now one can substitute the determinant @ with the trans- 

formed nth row into Rikij = 0 and bring the obtained left-hand side to 

a common denominator. If i, j and k f “, then for this choice of the 

functions Qbni, not one of the products of the six functions Q'"' will 

be a constant number. Because of the arbitrariness of q”. the term which 

does not depend on Q*"~ must be equal to zero. This term is equal to the 

left-hand side of the equation Rikij (n-1) = 0 if 0 has n - 1 rows and ” - 1 

columns. But for the case of ” - 1 independent variables the theorem is 

true by hypothesis. The same arguments can be made if on substitutes 

functions of another variable q into the last row of the determinant 0 

after one has rearranged the variables, and thus after the proper change 

of variables 

(@)'~-2'F*l . cp"F*l (I*' 1 : 

(D= . :..... ., . . . . . . . . . . . . . 
(a")"--?$*'" . q"cp*n ($*n , 
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Let i = 1, j = 2 and k = 3. The coefficient of (@a_2 n_I n)6, where 
0 

, I 
n-2 n_I n is the cofactor in @ of the minor I * 

cpkp* (p*’ 1 

II)* =r &I*2 (p*2 i 

‘pa’p*x (p*= 1 

in the equation Riki j = 0 is equal to zero. For the determinant a)*, and 
we obtain an equation which has been considered in 

n 

@ - Det 11 ((pi)+-l, ., vi, 1 [I = n (vk - cp’) 
k>l 

if qi and pgi are linearly independent. After a proper change of vari- 

abl es, we deduce 

(6.5) 

We ,qbtain the differential equation for the functions 9’ by substitut- 
ing g” from (6.5) into Rijij = 0. Hence, for Tk(k f i, j) we have 

(dl$ / d&2 = Q(k) (q? - a,(“)) . . . (cpk - a,fk)) (a?) = const) 

Arguments analogous to those used in cl21 yield ai(k) = ai (i, k = 1, 

. * . , n) , and the following bounds for the functions: - 

Hence for the appropriate choices of ai, a0(k) and gi 

R 

gii z + fl [‘aJ (q”) - P(q’)l 
h i i 

(6.6) 

However, 
ables q1 

if we select ~II = ql, we obtain (6.3). fherefore, the vari- 

are ellipsoidal coordinates in the space x . 

If r > 0, and if there exists a linear relation among the functions 
cp’j(i = r + 1, . . . , s), then the Q’ (i = 1, . . . , r) (Section 3) must be 

either angles which express an axial symmetry of the coordinate system, 

or they reduce to one of the Cartesian coordinates (compare cylindrical 

coordinates), while the Q’ (i = r + 1, . . . . S) are degenerate ellipsoidal 

coordinates (parabolic, spherical and so on). The corresponding proof by 

means of mathematical induction, however, becomes very involved due to 
the fact that one has to consider many subcases for large n. LeviCivita 

[IO] has shown that when r = n the coordinates Q’ can be only rectangu- 

lar Cartesian coordinates. This completes the proof of the theorem. 
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The Liouville case of the integrability of equation (0.1) with n > 2 

can hold only for the trivial case for rectangular Cartesian coordinates. 

This follows from the equation H 
lkij 

= 0. 

Thus the ellipsoidal coordinates are the most general ones for which 

equation (0.1) is integrable. Rut this means that one can find general 

conditions for h’ and C’ of Section 3. Since neither the force function 

of the n body problem (n > 2, hi = o), nor the expressions for h’ and I: 

for the restricted circular and elliptical three body problem satisfy 

these conditions, these problems cannot be solved by the method of 

separation of space variables. This does not, however, imply t.hat the 

results obtained here cannot be used in these problems. For example, one 

can seek a solution by the method of expanding the funct,ion M (Section 5 

‘Ihe results obtained are of practical value [19,201 if one takes for ff, 

the characteristic function of the twice averaged restricted three body 

problem. Finally, one can find particular solutions of the indicated 

integrable problems. 

1. 

No investigations have yet been made of the problem of determining 

the types of general contact transformations (p, q) -a (p’, q’) which 

make equation (0.1) integrable in the variables p’ and g’ (see Section 5). 

It is natural to pose also the problem of finding the most general co- 

ordinates for which the canonical equations with the characteristic equa- 

tion (0.1) have integrals which are quadratic in pi (see Section 3). I f 

n = 2, and the coordinates are orthogonal! t.hen they are ellipt.i!< co- 

ordinates (Section 3). T3ut, for II ? 2, and far nonorthogonal doordinates 
I 

with n >2, the question is sti ‘11 open. 

In conclusion I express :ny deep gratitude, for valuable advice xe- 

ceived, to G.N. Duboshin, V.V. Rumiantsev, P.K. Rashevskii, 1.S. 

Arzhanykh, A.A. Rogoiavlenskii and V.G. Demin. 
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